Finitary Deduction Systems
نویسنده
چکیده
Cryptographic protocols are the cornerstone of security in distributed systems. The formal analysis of their properties is accordingly one of the focus points of the security community, and is usually split among two groups. In the first group, one focuses on trace-based security properties such as confidentiality and authentication, and provides decision procedures for the existence of attacks for an on-line attackers. In the second group, one focuses on equivalence properties such as privacy and guessing attacks, and provides decision procedures for the existence of attacks for an offline attacker. In all cases the attacker is modeled by a deduction system in which his possible actions are expressed. We present in this paper a notion of finitary deduction systems that aims at relating both approaches. We prove that for such deduction systems, deciding equivalence properties for on-line attackers can be reduced to deciding reachability properties in the same setting.
منابع مشابه
Coequational Logic for Finitary Functors
Coequations, which are subsets of a cofree coalgebra, can be viewed as properties of systems. In case of a polynomial functor, a logic of coequations was formulated by J. Adámek. However, the logic is more complicated for other functors than polynomial ones, and simple deduction rules can no longer be formulated. A simpler coequational logic for finitely branching labelled transition systems wa...
متن کاملInformation Algebras and Consequence Operators
We explore a connection between different ways of representing information in computer science. We show that relational databases, modules, algebraic specifications and constraint systems all satisfy the same ten axioms. A commutative semigroup together with a lattice satisfying these axioms is then called an “information algebra”. We show that any compact consequence operator satisfying the in...
متن کاملReasoning Inside The Box: Deduction in Herbrand Logics
Herbrand structures are a subclass of standard first-order structures commonly used in logic and automated reasoning due to their strong definitional character. This paper is devoted to the logics induced by them: Herbrand and semi-Herbrand logics, with and without equality. The rich expressiveness of these logics entails that there is no adequate effective proof system for them. We therefore i...
متن کاملThe Completeness Theorem for Monads in Categories of Sorted Sets
Birkhoff’s completeness theorem of equational logic asserts the coincidence of the model-theoretic and proof-theoretic consequence relations. Goguen and Meseguer, giving a sound and adequate system of inference rules for finitary many-sorted equational deduction, generalized the completeness theorem of Birkhoff to the completeness of finitary many-sorted equational logic and provided simultaneo...
متن کاملA Logic of Orthogonality
A logic of orthogonality characterizes all “orthogonality consequences” of a given class Σ of morphisms, i.e. those morphisms s such that every object orthogonal to Σ is also orthogonal to s. A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes Σ of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1105.1376 شماره
صفحات -
تاریخ انتشار 2011